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Abstract

The frequency distribution of a crystal is approximatei by
combining Van Bove's determination of its analytical nature and
Montroll's method of moments. The function G(Qz) is represented
by an expression with the correct behavior at the singularities and
at the meximum and minimum frequencies. The behavior between singular
points is adjusted smoothly by leaving un undetermined parameters.
These parameters are then fixed by using the correct first n moments.
As a test, this procedure was applied to the two dimensional square
lattice with nearest and next nearest neighbor interactions, solved
exactly for a particular case by Montroll. The approximated
distribution function had the right form at the end points, contained
terms of the appropriate logarithmic form and a jump function (with
known coefficients). It also included Legendre polynomials with
unknown coefficients, which were determined by the moments. The
difference between the exact and approximate distribution functions
was 8 few per cent using only the zeroth moment (normalization).

Using higher mouents produced 2 gradual increase in accuracy.
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Introduction

Af
1ty S
denoted simply by M, where i,j are indices of the cell, and o , B !

The normel modes of a lattice are eigen-vectors of a matrix M

are indices of perticles in a cell. Using the translational symmetry

of the lattice, the problem is customarily reduced to the diagonalizal!

of a metrix M e (%), denoted briefly by M(k), where k is the
propagation constant of the wave, and the index « (or @ ) takes on
X Z aifferent velues, where £ 1s the dimension of the spece and =
the number of atoms per cell. The coefficients of M(k) are periodic
functions of k, with the periodicity of the reciprocal iattice.

The normalized density of eigenvalues \02 essociated with the
matrix M can be defined by

G( V) = (V- (1)

vhere the average of a matrix, < >, is the trace of that matrix
divided by its dimensionelity. Using the uniform spacing of the

propagetion constent over one Brillouin zone, eq. (1) can be reduced to

a( ) = f« v - M(k) ax/ fa (2)

where

W,
OV = trece  §(v2Muypz  -(42) mfcf(vl )

QCuX

The relation between the frequency distribution function and

A
2
the distribution function of the squares of the frequency G(V ), is:

g = AV (v )

Since the integral in (2) cannot be evaluated explicitly except

1,2,3

I
for a few special cases many approximate methods heve been use?l

; ©. W. Mentreil, T. Chem. Phys. 15, 5(5> (1947).

W. A. Bowers and H. B, Rosenstock, J. Chem. Fhys. 18, 1056 (1950).
3 @. . Newels, J. Chem. Phys. 21, 1877 (1953). =

E. b. Rusenstock, J. Chem. Phys. 21, 206L {1953).

E. 3. Resenstock a2nd Gorden F. Newell 21, 1607 (1953).

d. 8. Resenstock and H. M. Rosenstock 21, 1508 (1¢53).
L A discussion ¢f some of the methods tcgether with references is gi.

by &. C. Meuzies, Repts. Prog. Phys. 16, 83 (1933).
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to study 9(\?). Bla.ckmcm5 approximates g()‘) by calculating the
frequencies at a large number of points in the Brillouin zone and
finding their distribnticn. Thic requires a great deal of labor, whi:-n
has to te repeated for every set cf force constants. Houston6 finds
the distribution alcng special lines in reciprocal space and interpol: i
for the rest of the Brillouin zone. This method introduces sowme
spurious singularities in g?(V}.7 We shall discuss Montroll'ae’%mgent
method in some detail as it forms part of the basis of our work.

Using (1) the nth moment of G(x) is given by

n
m, = Sx G(x)ax =MD (&)
D
or taking explicitly the average over the propagation constant as in (2)
n
m, = S(M (k)Y ax/ (ax (5)

Montroll was the first to recognize that the moments,‘vnn are easily
computed from traces at powers of M(k) via (5). He showed that the first
N moments can be used to counstruct the best approximate distribution
function in the sense of least squares, if the approximating function

can be expressed in a power series or & polynomial series contain N

terms.ll For these two choices of expansion, the least squares criteri-n

2 M. Blackman, Repts. Prog. Phys. 8, 11 (1941).

W. V. Houston, Rev. Mod. Phys. 20, 161 (1948).
71 T. Nakamura, Prog. Theor. Phys. 5, 213 11950).
8 E. W. Montroll, J. Chem. Phys. 10, 21b (19h2).
13 E. W. Montroll, J. Chem. Phys. 11, 481 (1943).

T. H. Walnut, J. Chem. Phys. 22, 692 (1954), calculates the mome..ts
1 directiy from M.

1. The use of polynormiials as expansion functions will always lead t.
the same result as the use of a power series, for the same number
of terms. The use of orthognal polynomials greatly simplifies the
arithmetic.
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is eguivalent to the requirement that the first N moments of the
approximating and exact distribution agree.l2 The rzte cf converge e
of such an expansion is determined by the smoothness of the exzct
function. Hence if G(x) is smcoth, the use of even a few moments could
be expected to give a good approximation.quowever, it was found by
Montroll1 when he 4id an exact calculation for a two-dimensional
square lattice, with nearest and next nearest neighbcr interactions,
that the frequency distribution function was nct smooth but containe.
two logarithmic singularities. Smollett13 extended Montroull's result to
the case of a two-dimensional ionic lattice, taking intc account tle
long renge Couloub forces between ions. Similc~ results were obtaiued
by Bocwers and Rosenstock2 fcr the frequency distribution of vibrations
perpendicular to the plane of the lattice. Van Hove1h subsequently
showed that these singulerities, far from being accidental, are a
necessary canceequence of the pericdic structure of the lattice. They
Xn(R) = Y (k)
occur at the critical points cfY , peints at which |grad x(x)l = o.
In two dimensicns G(x) will have at least cne logarithmic singularit;.
In three dimensions there will be at least three critical points X
where while G(x) remains ccntinuocus, its derivative G](xc) has an

inverse square roct singularity.

12
If an expansicn is made in functions other than polyncmials, e.g. o

Fcurier series, the method of equating moments and the least squ res
method are distinct for finite N, While knowledge of the first &
moments deterrnines a Fourier expansion to N terms, if the mcmert
conditions are applied, this knowledgs is insufficient to lead o

2 least squares sclution.

13 M. smollett, J. Chem. Phys. 15, 575 (1947).

14 . van Hove, Phys. Rev 89, 1189 (1953).
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q; These considerations show that an approximating function Gg(x) which
is smooth, such as a linear combination of polynomials whieh has the
correct first N moments, would converge sluwly to G(x) with increasi g
N. Hence a large number of mouments, und a corresponding large amot .t
of lsbor, wculd be needed to get a gocd fit to G(x).

We decided, therefore, to take explicitly into zcccunt the anelytic
nature of G(x) in constructing Gg(x). Ga(x) is represented by an
expression with the correct behavior at the singularities and et the
end points. The behavior between singular points is adjusted smoothly
by leaving n-undetermined parameters to be adjusted by the moments.l5
In this way the moments ocre used for approximating a smcoth function sc
that good agreement to G(x) might be expected, even when, only a small
nunber of moments are used. Essentially the same proccedure was
suggested independently by Poscnstock,16 vho applied it to the boudy-
centered and face-centered cubic lattices. See Section III for further
discussicn of Rosenstouck's results.

II. Twc Dimensicnel Square lattice

As a test, this procedure, which we call the moment-singularity
method was aprlied to & two-dimensicnal . monatomic square lattice with
neighbor and next neighbor interactions. The distritution functio.
cbteined by this procedure will be compared: (a) with the exact
distributicn calculated by Mcntroll,l (b) with the distribution obtained
by the unmcdified methcd of moments.

For this lattice M(k) is a two by two metrixt

) s [(t-l)Cl-tC1C2+1 tS;8,, &
tS1S, 1+(t-1)02-tC102

-1
where Cy = ccs ki, Sy = sin ky, 1 = 1,2, t = (1+&/2) ) % and ¥

7 .

15 The fitting between singular points may alsc be dcne by any other

method, e.g. Blackman's which yields sufficiently accurate results
ag%y fron the singularities.
H. B. Rosenstcck, On Counting Lattice Frequencies, Bull. Amer. P& .
Soc.,Vol. 29, No. 4, I 10. o
For comparison with notaticn in rererance likg - 04, x 2,
G(x) » (2r)-1 Vb" (f) we measure the freguency in such units t.a
the largest frequericy v= 1.

17




are neighbor and next neighbur forces respectively. The two rocts of
the secular equaticn are (7
ol o 2 2, .2} ife
X, = 1/4 {21:(l-C1C2)+(l-t)(2-C1-C2);'t Hut Sy 32 +(1-t) (Cl-\,z)]
The nth moment of G(x) can Ve found from (5) by integrating the trace

Mn(k) cver the Brillcuin zcune, -n < K3, ks ¢ n, end dividing the vesult

2
by 2(2x) . Thus, the first moment

1o 18 (8
(n
(8n ) ﬂ dk9 dk [ 2-(1-t)(cos ky+cus kp)-t cos ky+cos kal =1/2
1 2 J

Montroll has celculated the first six even moments A, of i% (V), is
a slightly %ifferent wey. These are related to the ¥ | by
2n _ n _ .

and their values are

My =1, My =172, My = 1/k + ( (1-t)° + ° (:0)

Wiy =18+ 3[(12)2 4 2] /16

My = 1/16 + (3/16) [(1 G +tJ + (3/128) [(l t)2+t2J
+(5/128) [ (1-t) te;

Mig = 1/1024(k62 - 980 £+960 £2.265 3480 t'-5 t°)

10
An explicit form for all higher moments was found by T. H. Welnut.

Due tc the symmetry of the problem it is sufficient to wcrk in
one quadrent of the Brillcouin zone, 0 & kl, ky & . In this quadrart
the critical pcints of x t (k) are at, (kl,kﬁ) = (0,0), {(0O,n), (=,0),
(r,n) when O <t ¢1/5. {11)
The values of x, in the two branches x t (k), at these criticol points
are (G, 1, 1, 1-t) and (0, t, t, 1-t) 1espectively. Fcr t greater
than 1/5 but less than 1/2,18 the x4 branch has one additional criticil
point at (c:os'l (t-1/bt), cos™l(t-1/4t)] and the value cf x4(k) at that

point is (1 + 3t)°/(16t).

1€ we shall assume as did Mcntrcll in ref. 1 that t £ 1/2.
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From the belovior of x+(k) in the neighborhced of the critical
points in reciprocal spece it is possible to deduce the form of G(x)
near the critical values of x,19 including the value of G(0) and G(1).

If the singaler part of G(x) is called F(x), then it caa be shown th-t
(L2
o | B, Pafxrl 4B, nx-(1-t) + BjH{x-(1-t) ), 0¢t ¢1/5
\J x _‘,\
7, ] 2 . X
(can!x L; +C2gn [ x-(1+3t) /16t( +C3d(x-(1-t) Vs L/SL B2

where H is the Heaviside unit furnction H(y) =0, y<« 0, H{y) =1, . r

y > 0, and (12v)
B, = -[ t(2- 2t)_] 1;2/;:2 B, = -{1-3t) [ t(1-t)(1- 2t)(1 St)J-ll 2
B, - -(2/(+x°) )f uel (1-3t) /t+(1+k2 sin a) /2f T Ko (3t22te1) 42
Cy = - [t(l-QtH'l/a/n ; [16t/n,2f(1 t) [_— 3(5t-1)(3t+1) \ i
c, = (1-3t) (}(1-t)(1-et>(5t-1)1 =Le

The value of G(x) at O and 1 is

6(0) = (1+t) [ t(1-2¢-3t2) ] "Y2/m; 6(1) = ¢+ 2/n (12¢)

In order to cprly the moment-singulerity method we subtracted F(x)
from G(x) and approximcted the remainder by a linecr combination of
n Legendre polyncmials. The first n-2 ccefficients of the expansion
are deterwinecd by the requirement that first n-2 miments cof the
approximate functicin agree with the exact ¢nes. The remaining two

ccefficients are then determined by fixing the end points. Hence,

when N moments are known, the aprrexinmate distribution function GaN(:) is:

N+1

(N)(x) F(x) + S A (N)Pk(2x-l), 0£x <1 (132)
k=0
where
N l \l -
AiN)‘= (2k+1§-g Pk(2x-1)G(x)dx- S Pk(2x-1)F(x)Cx {13b)
L0 0 =

¢r a discussicn see Secticn III of this paper, alsu Van Hove,
rcference (14) sections II and III. For comparison see Montroll,
reference 1.

-H.
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and
- < (W)
N ; 8 - AN
A§ )+A;“’ = @l gy %F: Ay
ndy _.:_::O (1; ‘.‘
= ' -1 (N Nl i (N)
\~1)“A(§) 4 -1)“’*A P =G0 -P0) - > (1) &

Ry Nl 1"7-- §
- -0
Note thaat Aﬁ" is independent oi M. ch2 oxder ¢f the aprroximeticn.
”~

AﬁN)

Wher. the unmodified methol of mements is used to approximate G/.ij,

(N)

the cpproximetior functicn, when N moacnts are known, G (x) is
2o
6™y = 55 R B leeen) (i4)
(1) . TR
the By ' are rgein given by eq. (130) with F(x) set equal to zerc.

(W)

A numericol cvalueticn of the AéN) aad the Bk was mede for t = 1/3.

This 1s the value «f t for which Mor.tra,lll’17 evaluated G(x) In a
clcsed ferm, so thet compariscns can be made. This will indicate how

useful the mcment-sirgularity method is.

For t = 1/3, egs. (12) and (13) yield
N ) ’{/ ; 5 ,6 N N+l (N )
Ga(x) = -3,n n Ix ) 3, -k /n n {Y -3, ' +§£- Ay 2x 1)

1/2,

G(0) = 2/n; 6(1) = (3) ° /x
N
The values c¢f the Ai')in different orders of approxinotion N € 6 are
sumncarized in talle 1. The values of the B&h), which are independert of

N, are By = 1, B, = 0, B, = -.b167, B

5 =05 B =0, B, = -.2069, B

3 L >

Compariscns between G(x), Gg(x), G:(x) are presented in tables 2, 3, and

u.

= -.,2290 (16)

III. Conclusicn
As can be seen frim Table 4 use of the non-singular methcd of
mcments results in o great increase in the accuracy of the approximaticn

cver the usunl methcd of noments for the same number of moments.

5

VR

e et e
aimoe——. e

S




e et

The additional work required to find F(x) was small, for t = 1/3.

Fcr the particular value cof t, xt(k) can be expanded in a Taylor se:i .

near the critical points, and the behavicr of G(x) near the crivica:

roints can be read off directly from Van Hove. For other values of ©,

the critical points (0, 0), (x, n) are of the type which Van Hove

e

calls generalized criticel pcints. The behavior of xt(k) near thesc
points 1is

x(k) = %, +| ] 2\V ﬂ?ug\ )+ o \EP ), §ki<”c
To find the form of G(x) neer these points the integral in (2) has to be
evaluated, neglecting terms of O( \§P). Trensforming to polar coordirates
in reciprocal space the integration over the radial variable, cen be

done irmediately by means of the delta function. This leaves an

integretion over the angle variable whose evaluation may be quite
difficult, if it cannct be f und in the tables. The integral
representing B3 in eq. {t2p) is one such case.

Hcwever even when the exact form of the singular part of G(x),
such as the ccefficient nultiplying the logerithm terms in two dimensicns,
or the square root terms in three dimensions, is not known,cunverge:.ce
would be improved greetly if the approximeting function contained torms
¢f the ccrrect singular form. The coefficients cf these terms coul’
then be determined by the moments. Thus, for the cese ccnsilered in
this paper, it would have been preferable if the eprroximating function
Ga(x) consisted of pclyncmials multiplying the logarithmic terms whese
value at the critical points is the correct crne. This wculd have
taken account of terms in the distributicn function of the form

(x-%)fn [x-xcl . A smaller number of ncments night then have been used

to obtain the same accuracy. This was not done bvecause ¢f the extra

8-
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work involved in solving simultaneous equations for the coefficients

of the multiplying polynomials since no orthognal set would be availz._lc

In general the amount of work required to find more moments has to T~

balanced against the work involved in solving simultaneous equations.
There is a theorem of Feynman2o which is useful in finding some

critical points without diagonalizing M(k). This theorem states, if

A ) W J)=xM & ) WY (Q ), A( & ) is hermitian.
Then

IACRM)  _ (W), gAY W)
3 a4 ¥ d ¥ )

Thus | grad lle(k) | = 0 whenever | grad M(k) | = 0. This can happen
only at those k, where all the branches have critical points
simultaneously.

A great difficulty, in many cases, in'finding the analytic form
of the distritution, is the location of all the critical points.
Van Hove's arguments predict only the minimum number of critical points
but give no upperbound. It is generally easy to find those which are at
symmetry points of the Brillouin zone. In most cases investigated thus

1,2,3
r

fa these are the only critical points. This might be due to tue

assunption made in “hese cases that the forces are short range. The
number of critical points might be expected to increase with the range
of the interaction and their location is then more likely to be et non-
symmetry points of the zone. Rosenstock16 has devised a method for
examining the presence of critical points inside the zone from the
behavior of 1¢’2(k) on the boundary.

For three dimensions, with short range forces, when the critical

points are at the symmetry points the matrix M(k) is easy to diuzgopnalize

20 ;
R. P. Feynman, Phys. Rev. 56, 3:0 (1939).
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at those points to find the critical frequencies. To find the exact
form of the distribution near the critical points xc, degenerate
perturbation theory has to be used to find the eigenvalues in the
vicinity of k_. However, since in three dimensions G(x) does not
become infinite at Xe it might be sufficient to use the right form of
G(x) near X, the coefficients of the singular part would then be
determined by the moment as mentioned above. This would agree with

16

the results of Rosenstock.

~10-




Tatle 1

Value ¢f the coefficients of Aﬁ of the Legendre polyncmials

in the cxpansion of the non-singular part ¢f distribution function.

N‘\k Ag AI\II Al; AI; Aﬁ AI;J Ag Ai; _
o{1) _.1306 -.1509 .1568

0(2) -.1306 2620 .1568  .1021

0(3) -.1306 .2620  .1409  .1021  .0159

G( ) -.1306 2620 .1409  .1383  .0159 .0368

0(5) -.1306 2620 .1409  .1388  .0536 .0368  -.0378

0(6) -.1306 2620 .1L09  .1388  .0536 .04k29  -.0378 .0061

e

e
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Table 2

N 2
Ccnvergence of the moment-singularity approximation G; )( \) ) tu the

exact distribution G{ V) 2) with increasing N. (N is the number of

noments used.)

SRR RITS P92 P9 o2 B o))
0 .L50° .637 .637 637 .637 .637 63T .C37
.05 .528  .653 .697 689 670 687 .689 L0603
.1 .620  .689 .T63 752 LT3k 739 .739 740
.3 1.35 1.25 1.34 1.34 1.36 1.35 1.35 1.34
1/3 @ 0 68 O ey 0 79 Y
Lo1.25 1.08 1.12 1.14 126 LT 1:28 117
T P .897 .897 911 911 937 .937 .951
6 1.17 .939 .830 .901 .879 .891 .887 .908
.7 1.52 1.28 1.20 1.20 1.17 116 1:.36  d.1k
75 P @ 72 48] @ oy 0 a
.9  .94k2 ,755 .682 671 .688 694 .695 .733
.95 .799  .637 539 585 .60L 621 .619 .63

1 .6851  .551 .551 .551 .551 .551 551 D DL,




Table 3

B, <2
Cenvergence of the unmodified mcment approximation G | \\) ), to the

(o)
exact, distribution G()) ) with increasing N. (N is the rnumbter cf

monents used.)

o \‘rz‘))cf)( 950 v V=0 v\ WD )
0 1 .583 .332 103 637
.05 7 .72 .655 646 683
ol 1 .808 .861 770 .THG
.3 1 1.11 1.13 1.20 1.3k
1/3 1 1.1k 1.14 1.2 O
U 1 1.18 1.13 1.20  1.17
.5 i I2el 1.12 1.12 cs1
.6 1 1.18 LS 1.06 23
.7 1 el 1.13 107 ALk
7501 1.05 1.12 1.09 @&
.9 1 .808 .861 953 .T73:
.95 1 .702 .655 664 631
il 1 .583 332 561 .551




Table 4

6 2
Ccmpariscn of the unmodified nouent opproxinaticn Gr(1 )(V ), the
G 32 '
nuizent singulerity cpproximetion G| ('V ), and the exact distritutic.

2 :
G(V7), whun six nauents are used.

X G],(J6)(x) Gr(zé)(x) G(x)
0 .103 637 637
e 646 689 633
! 770 739 .40
.3 1.20 1.35 1.3L

1/3 1.21 (8 8] 79)

" 1.20 1.18 1.17
S 1.12 <937 -951
<6 1.06 .887 .908
7 1.9 1,16 1.1k

.75 1.09 89 aJ
9 .953 695 733
.95 664 .619 .631

1 .561 551 551
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